середа, 27 березня 2019 р.


ELECTRIC POWER GENERATION 

(Джерела електричної енергії)


A generator is a device that converts mechanical energy into electrical energy. The process is based on the relationship between magnetism and electricity. In 1831, Faraday discovered that when a magnet is moved inside a coil of wire, electrical current flows in the wire.
A typical generator at a power plant uses an electromagnet a magnet produced by electricity not a traditional magnet. The generator has a series of insulated coils of wire that form a stationary cylinder. This cylinder surrounds a rotary electromagnetic shaft. When the electromagnetic shaft rotates, it induces a small electric voltage in each section of the wire coil. Each section of the wire becomes a small, separate electric conductor. The small voltage of individual sections are added together to form one large voltage. The load being connected to the windings terminals the current appears in the circuit. This current stipulates the electric power that is transmitted from the power company to the consumer.
An electric utility power station uses a turbine, engine, water wheel or other similar machine to drive an electric generator or a device that converts mechanical or chemical energy to generate electricity. Steam turbines, internal-combustion engines, gas combustion turbines, water turbines, and wind turbines are the most common methods to generate electricity. Most power plants are about 35 percent efficient.That means that for every 100 units of energy that go into a plant, only 35 units are converted to usable electrical energy.

Most of the electricity in the United States is produced in steam turbines. A turbine converts the kinetic energy of a moving fluid (liquid or gas) to mechanical energy. Steam turbines have a series of blades mounted on a shaft against which steam is forced, thus rotating the shaft connected to the generator. In a fossil-fueled steam turbine, the fuel is burned in a furnace to heat water in a boiler to produce steam. Coal, petroleum (oil), and natural gas are burned in large furnaces to heat water to make steam that in turn pushes on the blades of a turbine.
The most electricity generated in the United State comes from burning coal. In 2007, nearly half (48.5%) of the country's 4.1 trillion kilowatthours of electricity used coal as its source of energy. Natural gas, in addition to being burned to heat water for steam, can also be burned to produce hot combustion gases that pass directly through a turbine, spinning the blades of the turbine to generate electricity. Gas turbines are commonly used when electricity utility usage is in high demand. In 2007, 21.6% of the nation's electricity was fueled by natural gas.
Petroleum can also be used to make steam to turn a turbine. Residual fuel oil, a product refined from crude oil, is often the petroleum product used in electric plants that use petroleum to make steam. Petroleum was used to generate about two percent (2%) of all electricity generated in U.S. electricity plants in 2007.
Nuclear power is a method in which steam is produced by heating water through a process called nuclear fission. In a nuclear power plant, a reactor contains a core of nuclear fuel, primarily enriched uranium. When atoms of uranium fuel are hit by neutrons they fission (split), releasing heat and more neutrons. Under controlled conditions, these other neutrons can strike more uranium atoms, splitting more atoms, and so on. Thereby, continuous fission can take place, forming a chain reaction releasing heat. The heat is used to turn water into steam that, in turn, spins a turbine that generates electricity. Nuclear power was used to generate19.4% of all the country's electricity in 2007.
Hydropower, the source for 5.8% of U.S. electricity generation in 2007, is a process in which flowing water is used to spin a turbine connected to a generator. There are two basic types of hydroelectric systems that produce electricity. In the first system, flowing water accumulates in reservoirs created by the use of dams. The water falls through a pipe called a penstock and applies pressure against the turbine blades to drive the generator to produce electricity. In the second system, called run-of-river, the force of the river current (rather than falling water) applies pressure to the turbine blades to produce electricity.
Geothermal power comes from heat energy buried beneath the surface of the earth. In some areas of the country, enough heat rises close to the surface of the earth to heat underground water into steam, which can be tapped for use at steam-turbine plants. This energy source generated less than 1% of the electricity in the country in 2007.
Solar power is derived from the energy of the sun. However, the sun's energy is not available full-time and it is widely scattered. The processes used to produce electricity using the sun's energy have historically been more expensive than using conventional fossil fuels. Photovoltaic conversion generates electric power directly from the light of the sun in a photovoltaic (solar) cell. Solar-thermal electric generators use the radiant energy from the sun to produce steam to drive turbines. In 2007, less than 1% of the nation's electricity was based on solar power.
Wind power is derived from the conversion of the energy contained in wind into electricity. Wind power, less than 1% of the nation's electricity in 2007, is a rapidly growing source of electricity. A wind turbine is similar to a typical wind mill.
Biomass includes wood, municipal solid waste (garbage), and agricultural waste, such as corn cobs and wheat straw. These are some other energy sources for producing electricity. These sources replace fossil fuels in the boiler. The combustion of wood and waste creates steam that is typically used in conventional steam-electric plants. Biomass accounts for about 1% of the electricity generated in the United States.

Немає коментарів:

Дописати коментар

Популярні публікації